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Abstract
Previous research on join sampling has focused on joins without selection conditions, even though
such conditions are prevalent in everyday queries in database systems. Motivated by this, we
undertake a systematic investigation on the complexity of sampling from the result of an acyclic join
under equality conditions given only at runtime. When conditions are conjunctive, the goal is to
understand when it is possible to precompute a feasible structure that uses Õ(IN) space and supports
sampling in Õ(1) time, where IN is the input size. We present a dichotomy to characterize (subject
to a widely-accepted conjecture) the existence of such structures based on the conditions supplied
and, in every feasible scenario, give an optimal structure of O(IN) space and O(1) sample time. We
then extend our investigation to conditions expressed in disjunctive normal form, where the core
challenge reduces to the fundamental set union sampling problem. We overcome the challenge with
an optimal algorithm and utilize it to develop optimal sampling structures. Our findings also lead
to new results on the closely-related random enumeration problem.
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1 Introduction

Join evaluation on massive datasets often incurs prohibitive computation. A primary cause
of this phenomenon is the sheer volume of the join result — whose size grows rapidly as the
number of participating relations increases — because reporting each result tuple requires at
least constant time. However, in many scenarios (ranging from approximate query processing
and query optimization to interactive data exploration and machine learning), the goal is not
to enumerate the entire join result, but rather to obtain a small representative sample. Such
samples can be used to approximate aggregates, estimate selectivities, support interactive
analysis, or train a learning model without materializing the full join. These practical
needs have motivated the development of numerous join sampling algorithms in the theory
community; see [2, 8, 13,15,16,19,28,32,35] and the references therein.

Previous research has focused on sampling from joins without selection conditions. This
stands in stark contrast to reality, where queries nearly always include such conditions,
typically in the form of equality predicates like (A = a ∧ B = b) ∨ (C = c). Here, the
values a, b, and c are unknown in advance and are supplied by a query only at runtime.
Essential in narrowing down the data of interest, these predicates prompt the question of how
join sampling can remain effective in the presence of conjunctive and disjunctive selection
conditions. This paper addresses the question in a systematic manner.
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Figure 1 Acyclicity and connexity

Mathematical Conventions and Computation Model. The notation N represents
the set of integers. Given an integer x ≥ 1, we define [x] = {1, 2, ..., x}. All logarithms have
base 2 by default. Our analysis assumes the standard word-RAM model [17] where a word
has length Θ(log IN) with IN being the input size. Given an integer x representable using a
word, we assume that a uniformly random number can be drawn from [x] in constant time.

1.1 Problem Definitions
Let att be a set whose elements are called attributes. Given a subset U ⊆ att, a tuple over
U is a function u : U → N. For each attribute X ∈ U , we call u(X) “the value of u under
X” or simply the “X-value” of u — such a value is assumed to fit in a word. Given a subset
U ′ of U , we use u[U ′] (note: square bracket here) to represent the tuple v over U ′ satisfying
v(X) = u(X) for all X ∈ U ′; the tuple u[U ′] is called the projection of u onto U ′. We define
a relation as a set R of tuples over an identical set U of attributes, where U is called the
schema of R, written as schema(R) = U .

Let V be a finite subset of att and E be a subset of 2V . We call the hypergraph G = (V, E)
a schema graph if every attribute of V appears in at least one element — a hyperedge — of
E . The hypergraph is acyclic [1, 33] if there exists a tree T having two properties:

[the one-one property] every node of T corresponds to one distinct hyperedge in E ;
[the connectedness property] for each attribute X ∈ V, the nodes in T (a.k.a. hyperedges
in E) containing X form a connected subtree in T .

We refer to T as a join tree of G.

▶ Example 1. Consider the hypergraph G = (V, E) where V = {A, B, ..., J}, and E has 5
hyperedges: e1 = EGH (shortform for set {E, G, H}), e2 = CDE, e3 = GI, e4 = ABC, and e5 = EFJ.
The hypergraph is acyclic, with a join tree T given in Figure 1(a). The hyperedges containing
attribute, for instance, E are e1, e2, and e5, and they form a connected subtree of T . As
another example, the hyperedges containing G are e1 and e3, which again are connected. ◀

Fix a schema graph G = (V, E). A join instance (or simply, a join) of G is a set Q of
relations such that (i) |Q| = |E|, and (ii) for each hyperedge e ∈ E , there is a unique relation
Re ∈ Q with schema(Re) = e. We call G the “schema graph of Q”. The result of the join is
a relation over V defined as:

Join(Q) = {tuple u over V | ∀R ∈ Q, u[schema(R)] ∈ R}. (1)

The input size of Q is defined as IN =
∑

R∈Q |R|. If G is acyclic, we refer to Q as an acyclic
join; otherwise, it is a cyclic join.

If the relations in Q can be listed as R1, R2, ..., R|Q|, we may also represent Join(Q) as
R1 ▷◁ R2 ▷◁ ... ▷◁ R|Q|. If a relation, say, R1 consists of a single tuple u, we may replace it
with u in a join expression, e.g., u ▷◁ R2 ▷◁ ... ▷◁ R|Q|.
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(G, Z)-Sampling. Fix a schema graph G = (V, E) whose size is assumed to be a constant,
together with a subset Z ⊆ V . Let Q be a join instance of G. Given a tuple z over Z, define

σz(Join(Q)) = {u ∈ Join(Q) | ∀Z ∈ Z, u(Z) = z(Z)} (2)

namely, σz(Join(Q)) comprises the tuples u in the join result satisfying the conjunctive
condition

∧
Z∈Z u(Z) = z(Z). Given a tuple z over Z, a (G,Z)-sampling operation returns

a tuple chosen from σz(Join(Q)) uniformly at random, or returns nil if σz(Join(Q)) = ∅.

Problem 1: Preprocess Q into a data structure that can support (G,Z)-sampling
operations, with the requirement that the sample returned by each operation must
be independent of the outputs of all previous operations.

We call the above the (G,Z)-sampling problem. A data structure is feasible if it uses Õ(IN)
space and supports a sampling operation in Õ(1) time where the notation Õ(.) hides a factor
polylogarithmic to IN.

(G,
∨m

i=1 Zi)-Sampling. Fix a schema graph G = (V, E) whose size is assumed to be a
constant, as well as m subsets Z1, Z2, ...,Zm of V for some m ≥ 1. Let Q be a join instance
of G. Given m tuples z1, z2, ..., zm where zi is over Zi for each i ∈ [m], define

σz1∨...∨zm
(Join(Q)) =

m⋃
i=1

σzi
(Join(Q)) (3)

where σzi(Join(Q)) is as defined in (2). In other words, σz1∨...∨zm(Join(Q)) includes all and
only the tuples u in the join result that satisfy a condition given in a disjunctive normal
form:

∨m
i=1

( ∧
X∈Zi

u(X) = zi(X)
)
. The value of m is permitted to be arbitrarily greater

than 2|V |, implying that Z1, Z2, ...,Zm need not be distinct1.
Given m tuples z1, z2, ..., zm, a (G,

∨m
i=1Zi)-sampling operation returns a tuple chosen

from σz1∨...∨zm
(Join(Q)) uniformly at random, or returns nil if σz1∨...∨zm

(Join(Q)) = ∅.

Problem 2: Preprocess Q into a data structure that can support (G,
∨m

i=1Zi)-
sampling operations, with the requirement that the sample returned by each opera-
tion must be independent of the outputs of all previous operations.

We call the above the (G,
∨m

i=1Zi)-sampling problem.

1.2 Our Results
Problem 1 ((G, Z)-Sampling). The following is a conjecture that has been extensively
used in studying fine-grained complexities; see, e.g., [14, 18, 23, 24, 29, 30] and their references.

Strong Set Disjointness (SSD) Conjecture. Let S1, S2, ..., Sm be m ≥ 2 sets
whose elements are integers. Define N =

∑m
i=1 |Si|. In the set disjointness problem,

we want to preprocess these sets into a data structure of S space such that, given
any distinct integers a, b ∈ [m], we can report in T = o(N) time whether Sa∩Sb = ∅.
The SSD conjecture states that S must be Ω(N2/(T2 polylog N)).

We investigate under the above conjecture the existence of feasible structures for Problem
1. It turns out that the answer depends on whether the schema graph G = (V, E) of Q is
“ext-Z-connex”, which is a notion introduced by Bagan, Durand and Grandjean [5]:

1 For example: SELECT * FROM Payment P, TaxPayer T WHERE P.ssn = T.ssn AND (T.job = ‘prof’ OR
T.job = ‘lawyer’). Here, both Z1 and Z2 are {job}.

ICDT 2026
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▶ Definition 2. Let G = (V, E) be a schema graph and Z be a subset of V. We say that G is
ext-Z-connex if the hypergraph (V, E ∪ {Z}) is acyclic.
▶ Example 3. Consider again the schema graph G = (V, E) in Example 1. The table below
lists the answers to “is G ext-Z-connex?” for several representative choices of Z.

Z ∅ E AE ACE ACEH ACEHI ACEHF
ext-Z-connex? yes yes no yes yes no yes

Figure 1(b) shows a join tree of the hypergraph (V, E ∪ {ACEHF}), which serves as evidence
that (V, E ∪ {ACEHF}) is acyclic; hence, G is ext-ACEHF-connex. ◀

Our dichotomy result is:
▶ Theorem 4. Let G = (V, E) be an acyclic schema graph and Z be a subset of V. Subject
to the SSD-conjecture, the (G,Z)-sampling problem admits a feasible structure if and only if
G is ext-Z-connex.

Prior to our work, ext-Z-connexity has been used to prove dichotomies in several settings
[5, 9–13, 21], all of which seem quite different from (G,Z)-sampling. Interestingly, the
dichotomy in Theorem 4 implies an approach to implement feasible (G,Z)-sampling via
“direct-access” queries. To explain, let L be an ordering of the attributes in V : X1, X2, ..., X|V |.
This L defines a lexicographic order ≺ on the tuples in Join(Q): u1 ≺ u2 if there is an
i ∈ [|V |] such that u1(Xi) < u2(Xi) but u1(Xj) = u2(Xj) for all 1 ≤ j ≤ i− 1. Given an
integer t, a direct access (DA) query [6,7, 12,13] returns the t-th tuple of Join(Q) under ≺
if t ∈ [|Join(Q)|], or nil otherwise. As shown in [12], if G is ext-Z-connex, we can find an
order L such that

the attributes of Z form a prefix of L, i.e., Xi ∈ Z for every i ∈ [|Z|];
one can build a structure of O(IN) space that answers any DA query in O(log IN) time.

Fix an arbitrary tuple z over Z. Crucially, the tuples in σz(Join(Q)) must be consecutive
under ≺ (because Z is a prefix of L). Thus, if σz(Join(Q)) ̸= ∅, there exist integers t1 and
t2 such that a tuple is in σz(Join(Q)) if and only if it is the t-th tuple under ≺ for some
t ∈ [t1, t2]. With O(log IN) DA queries, one can obtain the values of t1 and t2 (or certify their
non-existence) via binary search. Then, a sample of σz(Join(Q)) can be drawn by generating
a random t ∈ [t1, t2] and issuing one more DA query. This supports a (G,Z)-sampling
operation in O(log2 IN) time.2

In this work, we show that the sample time can be reduced to constant:
▶ Theorem 5. Consider the (G,Z)-sampling problem where G is ext-Z-connex. Given a join
instance Q of G, we can build a structure of O(IN) space in O(IN) expected time such that a
(G,Z)-sampling operation on Q can be supported in O(1) time.

Problem 2 ((G,
∨m

i=1 Zi)-Sampling). Our core contribution to this problem is a new
algorithm for a fundamental sampling problem:

Set Union Sampling: Let S1, S2, ..., Sm be m ≥ 2 sets of elements drawn from a
certain domain. Each Si (i ∈ [m]) supports three operations in constant time:
1. (size) return |Si|;
2. (membership) check whether a given element is in Si;
3. (sampling) return an element of Si chosen uniformly at random.
The goal is to sample an element from

⋃m
i=1 Si uniformly at random using only these

operations. The sample obtained each time must be independent of all previous samples.

2 We thank an anonymous reviewer for pointing out the connection to DA queries.
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We will prove:

▶ Theorem 6. There is a set union sampling algorithm with O(m) expected sample time.

Currently the fastest expected sample time [4, 13] — as will be reviewed in Section 2 —
is O(min{m2, m log2 N}) where N =

∑m
i=1 |Si|, which we strictly improve. By combining

Theorems 5 and 6 with additional ideas, we will prove:

▶ Theorem 7. Consider (G,
∨m

i=1Zi)-sampling where G is ext-Zi-connex for all i ∈ [m].
Given a join instance Q of G, we can build a structure of O(IN) space in O(IN) expected time
such that a (G,

∨m
i=1Zi)-sampling operation on Q can be supported in O(m) expected time.

The connexity requirement is necessary for m ≤ IN0.49, as formally stated below:

▶ Theorem 8. Consider (G,
∨m

i=1Zi)-sampling where m ≤ IN0.49. If G is not ext-Zi-connex
for an arbitrary i ∈ [m], no structures of Õ(IN) space can guarantee Õ(m) expected sample
time, subject to the SSD conjecture.

Random Enumeration. Random enumeration of a query result produces a (uniformly)
random permutation of the elements therein. An algorithm achieves a delay of ∆ if it can
(i) output the first element or declare an empty result within ∆ time, and (ii) after the
previous output, produce the next element or declare “no more” within an additional ∆ time.
The algorithm ensures an expected delay ∆ if it satisfies the preceding requirement, except
that the two “∆ time” occurrences are replaced with “∆ expected time”. By combining our
sampling techniques with a new enumeration-to-sampling reduction, we prove:

▶ Theorem 9. Let G = (V, E) be a schema graph and Z be a subset of V such that G is
ext-Z-connex. Given a join instance Q of G, we can build a structure of O(IN) space in O(IN)
expected time such that, given any tuple z over Z, we can randomly enumerate σz(Join(Q))
with an expected delay of O(1).

2 Related Work

At a high level, the objective of join sampling is to create a data structure on the input
relations of a join Q that can be used to extract a uniformly random tuple from Join(Q). The
samples obtained from repetitive extractions must be mutually independent. If Q is acyclic,
Zhao et al. [35] described an O(IN)-space structure ensuring O(1) sample time. The problem
becomes more challenging when Q is cyclic. Improving over [16,19], Kim et al. [28] presented
a structure of O(IN) space that can guarantee a sample time of O(AGM/ max{1, OUT}),
where AGM is the join’s AGM bound [3], and OUT = |Join(Q)|. For a broad class of
joins with “degree constraints”, Wang and Tao [32] managed to reduce the sample time to
O(polymat/ max{1, OUT}), where polymat is the polymatroid bound [27] of Q, which never
exceeds but can be significantly lower than the AGM bound. Recently, Capelli et al. [8]
presented a different approach to match the result of [32] up to polylogarithmic factors.

We are not aware of previous work on join sampling under conjunctive or disjunctive
selection predicates. Like [35], our study concentrates on acyclic joins, but the sampling
problem in [35] is merely a case of (G,Z)-sampling (see Problem 1) where Z = ∅; the result
of [35] can be regarded as a special version of our Theorem 5.

The set union sampling problem in Section 1.2 has been studied in two independent
articles [4, 13]. Both articles described an algorithm ensuring an expected sample time of
O(m · (N/n)) where n = |

⋃m
i=1 Si| and N =

∑m
i=1 |Si| (Section 5.1 will discuss this algorithm

in detail). Note that N can reach mn (this happens when S1 = S2 = ... = Sm), in which

ICDT 2026
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case the sample time becomes O(m2). In [4], Aumuller et al. presented another algorithm
to extract, in O(m log2 N) expected time, a sample that is uniform “with high probability”.
Our Theorem 6 strictly improves these results.

Given an acyclic join Q, Carmeli et al. [13] showed how to randomly enumerate Join(Q)
with a delay of O(log IN), after an O(IN log IN)-time preprocessing. In Theorem 9, we settle
a more general problem (i.e., random enumeration of σz(Join(Q))) with an expected delay
of O(1). Given m acyclic joins Q1,Q2, ...,Qm whose results have the same schema, Carmeli
et al. [13] described a way to randomly enumerate

⋃m
i=1 Join(Qi) with an expected delay of

O(m2 log INall) after an O(INall log INall)-time preprocessing, where INall is the sum of the
input sizes of Q1, ...,Qm. Our set union sampling algorithm in Section 5.1 can be used to
reduce their expected delay to O(m log INall). Random enumeration of

⋃m
i=1 Join(Qi) for

general (cyclic) joins Q1, ...,Qm was considered in [19]; we do not delve into their results
further because they are subsumed by those of [13] on acyclic joins (i.e., this work’s focus).

Join reporting (rather than sampling) under selection has been investigated in [18,34]. To
explain their findings, fix a schema graph G = (V, E) of a constant size (note: G can be cyclic),
together with a non-empty subset Z ⊆ V . Consider the task of creating a data structure on a
join instance Q of G such that, when supplied with a tuple z over Z, the structure can report
σz(Join(Q)) efficiently. The focus of [18, 34] is to study the relationships between the space
consumption — denoted as S — of the structure and the time of computing σz(Join(Q)).
Targeting “output-sensitive” algorithms that report σz(Join(Q)) in T + O(|OUT|) time
where OUT = |σz(Join(Q))|, Zhao et al. [34] derived smooth tradeoffs between S and T.
In Section 6, we complement their results by identifying scenarios where S = O(IN) and
T = O(1) are possible, provided that the time of reporting σz(Join(Q)) is allowed to be
T + O(|OUT|) expected. The work of [18], on the other hand, concerns a different form of
tradeoffs that do not bear direct relevance to our results.

3 Preliminaries

3.1 Weighted Sampling
Let S be a set of n elements, denoted as e1, e2, ..., en, where each ei (i ∈ [n]) carries a positive
integer weight w(ei). Set W =

∑n
i=1 w(ei). A weighted sampling operation returns a random

element X such that Pr[X = ei] = w(ei)/W for each i ∈ [n]. The alias method [31] supports
such an operation in O(1) time, after creating a data structure of O(n) space over S in O(n)
time. We will refer to the structure as the alias structure.

3.2 Acyclic Join Sampling without Selections
This subsection outlines how to build a structure over an acyclic join Q that uses O(IN)
space and can extract a uniformly random tuple from Join(Q) in O(1) time.

Take a join tree T of the schema graph G = (V, E) of Q. Root T at an arbitrary node
e∗ (recall that each node of T is a hyperedge in E) — doing so enables us to speak about
the “parents” and “children” of the nodes in T . Given a node e in T , we denote by Te the
subtree of T induced by all the descendants of e (note: e is a descendant of itself). Define

Qe = {Re′ | node e′ is in Te} (4)

where Re′ is the (only) relation in Q whose schema is e′. We will refer to Qe as a subjoin. The
schema graph of Qe is Ge = (Ve, Ee) where Ee = {e′ ∈ E | node e′ is in Te} and Ve =

⋃
e′∈Ee

e′.
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Given a tuple u ∈ Re, let us examine u ▷◁ Join(Qe), namely, the result tuples of the
subjoin Qe to which u “contributes”. Define the subjoin weight of u as

subj-we(u) =
∣∣∣u ▷◁ Join(Qe)

∣∣∣ (5)

where Qe is given in (4). The following is implicit from the arguments in [13, 35]. In
Appendix A, we present an explicit proof for completeness.

▶ Lemma 10. For any node e of T , the subjoin weights of all the tuples in Re can be
computed in O(IN) expected time.

The next lemma, again proved in Appendix A, can be deployed to build a sampling
structure at every node of T .

▶ Lemma 11. Let Q be an acyclic join with schema graph G, T be a rooted join tree of G,
and e be a node of T . We can build in O(IN) expected time a structure of O(IN) space that,
given any u ∈ Re, can draw a uniformly random tuple from u ▷◁ Join(Qe) in O(1) time.

It is now a simple exercise to design the overall structure for sampling from Join(Q) =
Join(Qe∗). Notice that Join(Q) is decomposed into a collection of sets: {u ▷◁ Join(Q) | u ∈
Re∗}. Random sampling from Join(Q) can be performed in two steps. First, obtain a random
tuple X ∈ Re∗ such that Pr[X = u] = |u ▷◁ Join(Qe∗)|/|Join(Q)| = subj-we∗(u)/|Join(Q)|
for each u ∈ Re∗ . As |Join(Q)| =

∑
u∈Re∗ |u ▷◁ Join(Qe∗)|, this is an instance of weighted

sampling once the subj-we∗(u) value of every u ∈ Re∗ has been calculated from Lemma 10.
An alias structure on Re∗ allows us to obtain X in O(1) time. Second, apply Lemma 11 to
draw a uniformly random tuple from X ▷◁ Join(Qe∗) in O(1) time.

3.3 Properties of Ext-Z-Connexity
In this subsection, we first introduce several concepts related to ext-Z-connexity that will
aid our exposition in later sections. Then, we review two key properties of ext-Z-connexity
essential for our technical development.

▶ Definition 12. Let G = (V, E) be an acyclic schema graph, Z be a subset of V, and T be a
join tree of G. We say that G is Z-canonical if there is a hyperedge e ∈ E satisfying Z ⊆ e.
An edge {e1, e2} of T is Z-breakable if e1 ∩ e2 ⊆ Z (note that e1 and e2 are hyperedges of
E; and {e1, e2} represents an undirected edge in T ).

▶ Definition 13. Let G = (V, E) be an acyclic schema graph, Z be a subset of V, and
T be a join tree of G. Suppose that removing all the Z-breakable edges of T partitions
T into s subtrees T1, T2, ..., Ts. For each i ∈ [s], define a hypergraph Gi = (Vi, Ei) with
Ei = {e ∈ E | node e exists in Ti} and Vi =

⋃
e∈Ei

e. Each Gi is a (Z, T )-component of G.

Given a schema graph G = (V, E), we call two distinct vertices X, Y ∈ V neighbors if
they appear together in at least one hyperedge. A path in G is a sequence of distinct vertices
X1, X2, ..., Xt such that Xi and Xi+1 are neighbors for all i ∈ [t− 1].

▶ Definition 14. Let G = (V, E) be an acyclic schema graph and Z be a subset of V. A
Z-path is a path Z1, X1, X2, ..., Xℓ, Z2 (where ℓ ≥ 1) such that (i) Z1 and Z2 belong to Z,
but they are not neighbors; (ii) Xi /∈ Z for every i ∈ [ℓ].

▶ Example 15. Consider the schema graph G = (V, E) in Figure 1(a). Among the choices of
Z in Example 3, G is Z-canonical only for Z = ∅ and Z = E.

ICDT 2026
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Set Z to ACEHF. The edge {ABC, CDE} of T is Z-breakable because ABC ∩ CDE = C is a
subset of Z. On the other hand, the edge {EGH, GI} is not Z-breakable because EGH∩ GI = G
is not a subset of Z. By removing the Z-breakable edges, we obtain four subtrees of T : the
first contains nodes e1 and e3, while every other node (i.e., e2, e4, and e5) forms a subtree by
itself. Accordingly, G has four (Z, T )-components: G1 = (EGHI, {EGH, GI}), G2 = (ABC, {ABC}),
G3 = (CDE, {CDE}), and G4 = (EFJ, {EFJ}). There are no Z-paths in G.

Set Z instead to ACEHI. The path A, B, D, G, I is a Z-path. ◀

▶ Lemma 16 ( [5, Lemma 23]). Let G = (V, E) be an acyclic schema graph and Z be a subset
of V. The following statements are equivalent:
1. G is ext-Z-connex.
2. G does not have a Z-path.
3. Let T be an arbitrary join tree of G. Denote by s the number of (Z, T )-components of G,

and by Gi = (Vi, Ei) the i-th component. For every i ∈ [s], Gi is (Vi ∩ Z)-canonical.

▶ Example 17. Continuing Example 15, for Z = ACEHF, as mentioned G has (Z, T )-
components: G1 = (ABC, {ABC}), G2 = (CDE, {CDE}), G3 = (EFJ, {EFJ}), and G4 = (EGHI, {EGH,

GI}). For every 1 ≤ i ≤ 4, Gi is (Vi ∩ Z)-canonical; hence, G is ext-Z-connex. However, for
Z = ACEHI, as mentioned there is a Z-path in G, which is thus not ext-Z-connex. ◀

4 A Dichotomy on (G, Z)-Sampling

Theorem 4 involves a negative result (the “only-if direction”) and a positive result (the “if
direction”). We will prove the negative result in Section 4.1. The positive result is a corollary
of Theorem 5, whose proof is presented in Section 4.2.

4.1 The Only-If Direction of Theorem 4
As explained in Section 1.2, the input to the set disjointness problem comprises m ≥ 2
sets S1, ..., Sm. Given distinct integers a, b ∈ [m], a disjointness query returns whether
Sa ∩ Sb = ∅. The SSD-conjecture states that any structure promising to answer such a query
in O(polylog N) time must use Ω(N2/ polylog N) space, where N =

∑m
i=1 |Si|.

Suppose that the only-if claim of Theorem 4 is false. Thus, there exist a hypergraph
G = (V, E) and a subset Z ⊆ V such that G is not ext-Z-connex but a feasible (G,Z)-
sampling structure exists. We will show how to build a set-disjointness structure of Õ(N)
space that answers a disjointness query in Õ(1) time, thus breaking the SSD-conjecture.
Since G is not ext-Z-connex, it must have a Z-path by Lemma 16. Pick an arbitrary Z-path:
A, X1, X2, ..., Xℓ, B for some ℓ ≥ 1. Remember that no vertex on the path belongs to Z
except A and B.

From S1, ..., Sm (the input to set disjointness), next we create a join Q whose schema
graph is G = (V, E). For each hyperedge e ∈ E , construct a relation Re with schema e as
follows. For each integer i ∈ [m] and every element x ∈ Si, insert a tuple u into Re (provided
that u is not already in Re) such that (i) if A ∈ e, then u(A) = i; (ii) if B ∈ e, then u(B) = i;
(iii) for every attribute Z ∈ (e ∩ Z) \ {A, B}, set u(Z) = ⊥ where ⊥ is a special symbol; (iv)
for every attribute X ∈ e \ Z, set u(X) = x. By Definition 14, no hyperedge of E covers
both A and B; hence, at most one step between (i) and (ii) applies. The relation Re thus
designed has a size at most N .

▶ Lemma 18. Given distinct a, b ∈ [m], define a tuple z over Z with z(A) = a, z(B) = b,
and z(Z) = ⊥ for every Z ∈ Z \ {A, B}. Then, Sa ∩ Sb ̸= ∅ if and only if σz(Join(Q)) ̸= ∅.



J. Huang, Y. Tao, and S. Wang 9:9

Proof. Let us first prove the “if direction” (⇐). Consider an arbitrary tuple u ∈ σz(Join(Q)).
Clearly, u(A) = a and u(B) = b. Since A, X1, X2, ..., Xℓ, B is a Z-path, there exist hyper-
edges e0, e1, ..., eℓ in E such that (i) {A, X1} ⊆ e0, (ii) {Xi, Xi+1} ⊆ ei for each i ∈ [ℓ− 1],
and (iii) {Xℓ, B} ⊆ eℓ. We argue:

u(X1) = u(X2) = ... = u(Xℓ). (6)

To see why, fix any i ∈ [ℓ− 1]. As u ∈ σz(Join(Q)), we know u[ei] ∈ Rei
. As Xi and Xi+1

are attributes outside Z, our construction of Q ensures u(Xi) = u(Xi+1). The fact that this
holds for every i ∈ [ℓ− 1] proves (6). By the construction of Q, u(X1) is an element of Sa

and u(Xℓ) is an element of Sb. Therefore, (6) tells us Sa ∩ Sb ̸= ∅.
Next, we prove the “only if direction” (⇒). Fix any x ∈ Sa ∩ Sb. Construct a tuple u

over V where u(A) = a, u(B) = b, u(Z) = ⊥ for every Z ∈ Z \ {A, B}, and u(X) = x for
every X ∈ V \ Z. It suffices to prove that u ∈ σzJoin(Q). Indeed, this is true because, for
every e ∈ E , our construction explicitly inserts tuple u[e] into Re, noticing that e cannot
contain both A and B. ◀

The above lemma can be used to break the SSD-conjecture. Note that the input size of Q
satisfies IN ≤ N · |E| = O(N), thus allowing us to build a structure of Õ(IN) = Õ(N) space on
Q to support a (G,Z)-sampling operation in Õ(1) time. A disjointness query parameterized
by integers a, b ∈ [m] can be answered as follows. First, create a tuple z over Z such that
z(A) = a, z(B) = b, and z(Z) = ⊥ for every Z ∈ Z \ {A, B}. Then, issue a (G,Z)-sampling
operation and declare Sa ∩Sb = ∅ if and only if the operation returns nothing. This correctly
answers the query in Õ(1) time.

We note that similar constructions were used in [5,7] to prove dichotomies for settings
different from ours. Our contribution lies in establishing connections to (G,Z)-sampling.

4.2 Proof of Theorem 5 (a.k.a. The If-Direction of Theorem 4)
Let G = (V, E) be a schema graph and Z be a subset of V . Given a join instance Q of G, we
want to build a structure of O(IN) space in O(IN) expected time to support a (G,Z)-sampling
operation on Q in constant time.

Case 1: G Is Z-Canonical. By Definition 12, in this case there is a hyperedge e∗ ∈ E
satisfying Z ⊆ e∗. Now, root T at e∗, apply Lemma 10 to calculate the subjoin weights
of all tuples in Re∗ (the relation in Q with schema e∗), and build a sampling structure of
Lemma 11 by setting the symbol e there to e∗. Given a tuple z over Z, define

Re∗(z) = {u ∈ Re∗ | u[Z] = z[Z]}. (7)

It is easy to verify

σz(Join(Q)) =
⋃

u∈Re∗ (z)

u ▷◁ Join(Q). (8)

Random sampling from σz(Join(Q)) can be done in a two-step approach similar to what
was described at the end of Section 3.2. First, obtain a random tuple X ∈ Re∗(z) such that,
for each u ∈ Re∗(z), we have

Pr[X = u] = |u ▷◁ Join(Qe∗)|/|σz(Join(Q))| = subj-we∗(u)/|σz(Join(Q))|

where subj-we∗(u) is the subjoin weight of u (with respect to the rooted T ); see (5). As
|σz(Join(Q))| =

∑
u∈Re∗ (z) |u ▷◁ Join(Qe∗)| =

∑
u∈Re∗ (z) subj-we∗(u), this is an instance
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of weighted sampling since the subj-we∗(u) value of every u ∈ Re∗(z) is already available.
Hence, an alias structure on Re∗(z) allows us to obtain X in constant time. Second, apply
Lemma 11 to draw a uniformly random tuple from X ▷◁ Join(Qe∗) in constant time.

The alias structure on Re∗(z) occupies O(|Re∗(z)|) space and can be built in O(|Re∗(z)|)
time, as explained in Section 3.1. We do this for every z ∈ ΠZ(Re∗), where Π is projection
in relational algebra. For distinct z, z′ ∈ ΠZ(Re∗), the sets Re∗(z) and Re∗(z′) are disjoint.
Hence, in total, all the alias structures occupy O(|Re∗ |) = O(IN) space and can be built in
O(IN) expected time (the time is expected because hashing is required to obtain the sets
Re∗(z) of each z ∈ ΠZ(Re∗)).

Remark. We make an observation here that will be useful in Section 5.2. For each z ∈
ΠZ(Re∗), as mentioned |σz(Join(Q))| =

∑
u∈Re∗ (z) subj-we∗(u). Since the subjoin weights

of all tuples in Re∗ are available, we can compute the sizes |σz(Join(Q))| of all z ∈ ΠZ(Re∗)
by scanning Re∗ once in O(IN) time. Storing all those sizes takes O(|Re∗ |) = O(IN) extra
space. As the benefit, given any tuple z over Z, we can obtain |σz(Join(Q))| in O(1) time
with hashing.

Case 2: G Is Not Z-Canonical. Let T be an arbitrary join tree of G. As G is ext-Z-
connex, by Lemma 16, T defines a number s ≥ 1 of (Z, T )-components of G — denoted as
G1 = (V1, E1), ...,Gs = (Vs, Es), respectively — such that Gi is (Vi ∩ Z)-canonical for every
i ∈ [s]. For each i ∈ [s], define Zi = Vi ∩ Z and Qi = {Re ∈ Q | e ∈ Ei}. Note that Qi is a
join instance of the schema graph Gi, which is Zi-canonical. Denote by INi the input size of
Qi; we have

∑s
i=1 INi = IN because every relation of Q appears in exactly one of Q1, ...,Qs.

For each i ∈ [s], we build a (Gi,Zi)-sampling structure on Qi in the way explained for Case
1. All the s structures occupy O(IN) space in total and can be built in O(IN) expected time.

Consider now a (G,Z)-sampling operation, which is given a tuple z over Z. For each
i ∈ [s], defining zi = z[Vi], we perform a (Gi,Zi)-sampling operation using zi; let us
assume that this operation returns ui. If ui is nil for any i, we return nil for the original
(G,Z)-sampling operation. Otherwise, return u1 ▷◁ u2 ▷◁ ... ▷◁ us, which, as explained
in Appendix B, must be a uniformly random tuple of σz(Join(Q)). The (G,Z)-sampling
operation takes O(s) = O(1) time overall. This concludes the proof of Theorem 5.

5 (G,
∨m

i=1 Zi)-Sampling Algorithms

The crux of our solution to Problem 2 is an algorithm optimally settling the set union
sampling problem (see Section 1.2). We will present this algorithm in Section 5.1 and explain
in Section 5.2 how it leads to a structure for Problem 2 that establishes Theorem 7. Finally,
Section 5.3 gives the proof of Theorem 8.

5.1 Set Union Sampling
Recall from Section 1.2 that, in this problem, we have a collection of m ≥ 2 sets S1, S2, ..., Sm,
each supporting three O(1)-time operations: size, membership, and sample. The objective is
to draw an element from

⋃m
i=1 Si uniformly at random.

As before, set n = |
⋃m

i=1 Si| and N =
∑m

i=1 |Si|. For each element y ∈
⋃m

i=1 Si, define
its inverted set as InvS(y) = {i ∈ [m] | y ∈ Si}, i.e., the “ids” of the sets containing y. The
degree of y is deg(y) = |InvS(y)|. Let us first describe a baseline method, which was given
explicitly in [4] and implicitly in [13], before presenting our new ideas.
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Baseline Method. Draw a random value X ∈ [m] such that Pr[X = i] = |Si|/N for each
i ∈ [m]. Then, use the sampling operation to draw an element Y from SX . Finally, carry
out an acceptance step:

Acceptance Step: Accept Y with probability 1/ deg(Y ).

If accepted, Y is returned; otherwise, the algorithm repeats from scratch.
The algorithm correctly returns a uniform sample of

⋃m
i=1 Si. To see why, fix an arbitrary

element y ∈
⋃m

i=1 Si. This element is returned if and only if three conditions are satisfied: (i)
X ∈ InvS(y), which occurs with probability |SX |/N for each X ∈ InvS(y), (ii) Y = y, which
occurs with probability 1/|SX | conditioned on X, and (iii) y is accepted, which occurs with
probability 1/ deg(y) conditioned on y. Hence, the algorithm outputs y with probability∑

X∈InvS(y)

|SX |
N
· 1
|SX |

· 1
deg(y) = 1

N
(9)

which is identical for all y ∈
⋃m

i=1 Si. As a corollary, in each repeat, the algorithm succeeds
in returning a sample with probability n/N . Thus, N/n repeats are needed in expectation.

The random value X can be easily obtained in O(m) time. One (logically simple) way
to do so is to build an alias structure (see Section 3.2) on |S1|, |S2|, ..., |Sm| — namely, the
m set sizes — on the fly in O(m) time (using the size operation), after which X can be
extracted from the structure in O(1) time. The time to obtain Y is O(1) (using the sampling
operation). The troublemaker, however, is the acceptance step. The standard approach [4,13]
is to query the membership of Y in each Si (i ∈ [m]), which costs O(m) time. This renders
the overall sample time O(mN/n) in expectation.

New Idea: Total Law of Expectation. Our objective is to implement the acceptance
step in O(mn/N) expected time — note that this is faster than O(m) by a factor of N/n,
which eventually allows us to bring the expected sample time from O(mN/n) down to O(m).

Let us start with a fundamental fact:

▶ Proposition 19. Let Γ be a random variable taking values from [m], and U be a uniformly
random variable over [m]. If U and Γ are independent, then Pr[U ≤ Γ] = 1

m E[Γ].

The proposition is the total law of expectation in disguise; see Appendix C for a proof.
Equipped with the above, implementing the acceptance step boils down to:

Given x ∈ [m] and y ∈ Sx, generate a rand. var. Γ ∈ [m] with E[Γ] = m/ deg(y).

Later, we will explain how to achieve the above purpose in O(m/ deg(y)) expected time.
Once done, we can perform the acceptance step as follows (recall that, prior to this, the
baseline method has obtained the values of two random variables X and Y ): (i) generate a
uniformly random variable U over [m] in constant time; (ii) generate the aforementioned
random variable Γ (setting x and y to the values of X and Y , respectively) in O(m/ deg(Y ))
expected time; (iii) accept if U ≤ Γ.

Correctness follows from Proposition 19 (the acceptance probability is 1
m E[Γ] = 1/ deg(Y ),

as desired). For a particular x ∈ [m] and a particular y ∈ Sx, we have Pr[X = x, Y = y] =
|Sx|
N

1
|Sx| = 1/N. Thus, the expected cost of the acceptance step will be at the order of∑

x∈[m]

∑
y∈Sx

Pr[X = x, Y = y] m

deg(y) =
∑

x∈[m]

∑
y∈Sx

1
N

m

deg(y)
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= m

N

∑
y∈∪m

i=1Si

∑
x∈InvS(y)

1
deg(y) = mn

N
(10)

where the last step used deg(y) = |InvS(y)| and n = |
⋃m

i=1 Si|.

Generation of Γ. Next, we will concentrate on the Γ-generating task defined earlier.
Recall that the generation is based on a given set “id” x ∈ [m] and an element y ∈ Sx.
Consider the procedure below:

find-2nd (x, y)
1. F ← 0 and I ← [m] \ {x}
2. while I ̸= ∅ do
3. sample without replacement (WoR) an integer i ∈ I

/* note: the WoR-sampling operation removes i from I */
4. if y ∈ Si then return F else increase F by 1
5. return F /* note: F must be m− 1 here */

In plain words, if deg(y) ≥ 2, the value F returned is a random variable giving the number of
failed WoR-sampling operations before finding another set Si ̸= Sx containing y; otherwise,
F = m− 1. We prove in Appendix C:

▶ Proposition 20. E[F ] = m
deg(y) − 1.

Combining the above with the obvious fact that F ∈ [0, m − 1], we can now define
Γ = F + 1 as the desired random variable satisfying Γ ∈ [m] and E[Γ] = m/ deg(y). The
WoR-sampling operation at Line 3 can be implemented in O(1) time; see, e.g., [13]. Thus,
the cost of find-2nd is proportional to the value F returned. It follows from Proposition 20
that the expected cost of find-2nd is O(E[F ]) = O(m/ deg(y)).

Total Cost of Set-Union Sampling. Recall that, in the (original) baseline algorithm,
each repeat takes O(m) time; as the number of repeats is N/n expected, the total cost of
taking one sample from

⋃m
i=1 Si is O(mN/n). By applying our remedy, one repeat of the

baseline algorithm is now carried out in O(mn/N) expected time (see the analysis in (10)).
The remedy does not affect the expected number of repeats (i.e., N/n), which suggests
that the overall expected sample time should be O(mn

N · N
n ) = O(m). Indeed, if E[Ttotal ]

represents the expected time for our algorithm to acquire a sample from
⋃m

i=1 Si, we can
write E[Ttotal ] = O(mn/N) + (1 − n/N) E[Ttotal ], which solves to E[Ttotal ] = O(m). This
completes the proof of Theorem 6.

Remark. The proposed algorithm is reminiscent of that of Karp, Luby, and Madras [26],
which was designed to estimate |

⋃m
i=1 Si| rather than to sample from

⋃m
i=1 Si. It can, in

fact, be incorporated into their framework to perform the estimation in a slightly simpler
way. Our key novelty lies in employing Proposition 19 for the acceptance step, while Karp,
Luby, and Madras [26] used a more sophisticated method that is tailored for estimation and
does not extend to sampling.

5.2 A Structure for Problem 2
Denote by Q a join instance of a schema graph G = (V, E). We prove Theorem 7 on the
(G,

∨m
i=1Zi)-sampling problem with a reduction to set union sampling. Recall that G is

ext-Zi-connex for every i ∈ [m]. Hence, we can create a structure Υi of Theorem 5 on every
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(G,Zi) that supports (G,Zi)-sampling in O(1) time. As each structure occupies O(IN) space,
it may appear as if the total space would be O(m · IN). This is not true. To see why, note
that every Zi is a subset of V ; as V has a constant size, the number of its subsets is bounded
by a constant. This means that there can be only a constant number of distinct subsets
among Z1,Z2, ...,Zm. Physically, one structure of Theorem 5 suffices for each distinct subset;
hence, the total space is O(IN). For similar reasons, all the structures can be constructed in
O(IN) expected time.

A (G,
∨m

i=1Zi)-sampling operation is given m tuples z1, ..., zm over Z1, ...,Zm, respec-
tively. For each i ∈ [m], define Si = σzi

(Join(Q)). The operation, essentially, aims to return
a uniformly-random tuple from

⋃m
i=1 Si. To cast this as an instance of set union sampling,

we need to implement each of the size, membership, and sampling operations in O(1) time
on each Si. This is trivial for two operations:

sampling: use Υi to perform a (G,Zi)-sampling operation;
membership: given a tuple u over V, this operation checks whether u ∈ σzi

(Join(Q)).
This requires checking if u[e] is in the relevant relation of Q for each e ∈ E and if
u(Z) = zi(Z) for each Z ∈ Zi. All the checking can be done in O(1) time.

We can support also the size operation in O(1) time by using directly Υi. The ideas are
similar to those explained in Section 4.2 and deferred to Appendix C. Our algorithm in
Theorem 6 can now be utilized to extract a uniformly-random tuple from

⋃m
i=1 Si in O(m)

expected time, thus completing the proof of Theorem 7.

5.3 Proof of Theorem 8
The SSD conjecture given in Section 1.2 concerns data structures that solve the set disjointness
problem with deterministic query time (here, a “query” is given a, b ∈ [m] and reports whether
Sa ∩ Sb = ∅). To prove Theorem 8, we will first argue that a similar conjecture still stands
even on set-disjointness structures with expected query time.

Expected SSD Conjecture. Let S1, S2, ..., Sm be m ≥ 2 sets whose elements
are integers. Define N =

∑m
i=1 |Si|. We want to preprocess these sets into a data

structure of S space such that, given any distinct integers a, b ∈ [m], we can report
in T = o(N) expected time whether Sa ∩ Sb = ∅. The expected SSD conjecture
states that S must be Ω(N2/(T2 polylog N)).

▶ Lemma 21. The SSD conjecture implies the expected SSD conjecture.

Proof. Suppose that we can build a structure Υ of S space and T expected query time for
the set disjointness problem. We will prove the existence of a set-disjointness structure of
S + O(T log N) space and O(T log N) deterministic query time. This establishes the claim in
Lemma 21 because T ≤ N ≤ S, implying S + O(T log N) = O(S log N).

Fix any distinct integers a, b ∈ [m]. Let A be the algorithm associated with T for deciding
whether Sa ∩ Sb = ∅. Denote by X the cost for A. Note that X is a random variable with
E[X] ≤ T. By Markov’s inequality, Pr[X ≥ 2T] ≤ 1/2. Imagine running A for 3 log N times.
The probability for all those runs to take at least 2T time to terminate is at most 1/N3. In
other words, with probability at least 1− 1/N3, at least one run finishes within 2T time.

In general, a randomized algorithm becomes deterministic once all the random bits are
fixed. “Running A” is equivalent to (i) first fixing a sequence σ of random bits, and (ii) then
executing deterministically the instructions of A based on σ. If A finishes within 2T time, it
consumes at most 2T words of random bits. Now, take t = 3 log N random bit sequences
σ1, ..., σt, each of which is 2T words long. For each i ∈ [t], define A(σi) as the deterministic
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algorithm that runs A based on σi, with the modification that A(σi) terminates itself after
having run A for a duration of 2T time. As per our earlier discussion, with probability at
least 1− 1/N3, at least one of A(σ1), ...,A(σt) manages to report whether Sa ∩ Sb = ∅.

Now, let us consider all m(m− 1)/2 distinct pairs of a, b ∈ [m]. With probability at least
1 −m2/N3 ≥ 1 − 1/N , for every pair of a and b, at least one of A(σ1), ...,A(σt) manages
to report whether Sa ∩ Sb = ∅ — let us call {σ1, ..., σt} a working set. As the probability
1− 1/N is greater than 0 (because N ≥ m ≥ 2), a working set must exist.

Our final set-disjointness structure consists of Υ and a working set of random-bit sequences
{σ1, ..., σt}, the total space of which is S+ O(T log N). Given two distinct integers a, b ∈ [m],
we run all of A(σ1), ...,A(σt), at least one of which manages to report whether Sa ∩ Sb = ∅.
The total query time is O(T · t) = O(T log N). ◀

Our argument in Section 4.1 is a reduction from set disjointness to (G,Z)-sampling
where G is not ext-Z-connex, and works regardless of whether the (G,Z)-sampling algorithm
is randomized or not. The reduction shows that if there is a structure of O(IN) space
that can support a (G,Z)-sampling operation in O(IN0.49) expected time, then there is a
set-disjointness structure of O(N) space and O(N0.49) expected query time — this will break
the expected SSD conjecture.

Let us return to the context of Theorem 8 where m ≤ IN0.49. W.l.o.g., assume that
G is not ext-Z1-connex, and yet there is a structure Υ of O(IN) space that can support
a (G,

∨m
i=1Zi)-sampling operation in O(m) expected time. We will show how to use Υ to

support a (G,Z1)-sampling operation in O(IN0.49) expected time, which, as pointed out
earlier, breaks the expected SSD conjecture. In fact, this is fairly obvious. Suppose that we
are given a tuple z1 over Z1. For each i ∈ [2, m], construct a dummy tuple zi over Zi such
that, for each Z ∈ Zi, zi(Z) is a value that does not appear in the relations of Q. Use Υ to
perform a (G,

∨m
i=1Zi)-sampling operation and simply return the output of this operation.

6 Random Enumeration from Sampling

This section will establish a connection between random enumeration and uniform sampling
and then leverage the connection to prove Theorem 9.

Reduction. We consider a general setup. Let S be a set of elements whose size |S| is
known. Two subroutines are at our disposal:

The first lists the elements of S (in an order we cannot control) within |S| · λrep time;
The second samples a uniformly random element of S with replacement within λsam time.

We will show that the elements of S can be randomly enumerated with an expected delay of
O(λrep + λsam).

Let us first describe an algorithm that produces a random permutation of S but does
not ensure a small delay. The algorithm runs in three phases. In the first one, we use
dynamic perfect hashing [20] to maintain a set Sseen of elements that have been found.
Initially, Sseen = ∅. Then, we carry out iterations, each of which adds a new element to Sseen .
Specifically, an iteration starts by randomly sampling an element e from S. If e /∈ Sseen, we
add it to Sseen and output it. Otherwise, the iteration re-samples from S until getting an
unseen element. As long as |Sseen| ≤ |S|/2, an unseen element is sampled with probability at
least 1/2. Hence, two samples suffice in expectation, and the cost of an iteration is O(λsam)
expected. The first phase finishes after |S|/2 iterations. The second phase finds the entire S,
and extracts (with hashing) and randomly permutes (with Fisher-Yates shuffle [22]) S \Sseen .
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The phase performs at most c · |S| · λrep atomic instructions of the RAM model for some
constant c. Finally, the third phase outputs S \ Sseen by the permuted order.

We apply a de-amortization approach to implement the above algorithm with a small
expected delay. In the first phase, every time an element is added to Sseen , we do not output
it immediately, but instead append it to a buffer queue Sbuf . We remove and output the
head element of Sbuf every

α =
⌈

1 + λrep
λsam

⌉
iterations so that Sbuf still has |S|

2 (1− 1/α) elements left at the end of the first phase. In the
second phase, we remove and enumerate the head of Sbuf after every c·|S|·λrep/( |S|

2 (1− 1
α )) =

2c ·λrep · α
α−1 atomic instructions. The third phase simply enumerates the remaining elements

in Sbuf (by their queued order) and S \ Sseen (by their permuted order) with a constant
delay. Overall, the expected delay, which is determined by the first two phases, is bounded
by α ·O(λsam) + 2c·λrep·α

α−1 . It is rudimentary to show that the bound is O(λsam + λrep).

Proof of Theorem 9. Consider an input Q to the (G,Z)-sampling problem with a feasible
pair (G,Z). Given a tuple z over Z, define S = σz(Join(Q)). Our structure in Section 4.2
can be used to obtain the size |S| in O(1) time. Theorem 5 ensures λsam = O(1). As
explained in Appendix D, it is possible to build a structure that uses O(IN) space, can be
built in O(IN) expected time, and can report S in O(1 + |S|) time, implying λrep = O(1).
Using the reduction described earlier, we can randomly permute σz(Join(Q)) with an O(1)
expected delay. This completes the proof of Theorem 9.
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A Supplementary Proofs for Section 3.2

A.1 Proof of Lemma 10
We first review a property of acyclic joins that can be used to compute, for each tuple u ∈ Re,
the result of u ▷◁ Join(Qe) in a manner reminiscent of Cartesian products. W.l.o.g., suppose
that e has t ≥ 1 child nodes in T denoted as e1, e2, ..., et. Define Xi = e ∩ ei for each i ∈ [t].
Consider the set S× of tuples created by the procedure below:

children-prod (u) /* u is a tuple in Re */
1. S× ← ∅
2. Si ← u[Xi] ▷◁ Join(Qei

) for each i ∈ [t]
/* recall that u[Xi] is the projection of u onto Xi */

3. for each (v1, ..., vt) ∈ S1 × ...× St do
4. add u ▷◁ v1 ▷◁ v2 ▷◁ ... ▷◁ vt to S×

The next lemma is a well-known property of Yannakakis’ algorithm [33].

▶ Lemma 22. [1, 33] Both statements below are true regarding children-prod: (i) Line 4
always adds a new tuple to S×, and (ii) u ▷◁ Join(Qe) = S×.

We are now ready to prove Lemma 10 by induction. If e (the node given in the lemma)
is a leaf of the (rooted) T , then Qe includes only Re. In this case, Join(Qe) = Re and
subj-we(u) = |u ▷◁ Re| = 1. Hence, the lemma holds on Re.

Now, consider e to be an internal node of T . W.l.o.g., suppose that e has t ≥ 1 child
nodes in T denoted as e1, ..., et. Assuming inductively that the lemma is correct on Rei

of every i ∈ [t], next we will prove the correctness on Re as well. For each i ∈ [t], define
Xi = e ∩ ei.

Let u be an arbitrary tuple in Re. According to Lemma 22, we have

subj-we(u) =
t∏

i=1
|Si(u)|

where Si(u) = u[Xi] ▷◁ Join(Qei
), as defined at Line 2 of children-prod. For each i ∈ [t],

we will show how to construct in O(IN) expected time a structure of O(IN) space from which
we can obtain |Si(u)| for every u ∈ Re in O(IN) time. This will prove Lemma 10 because
t = O(1).

For each u ∈ Re, define

Rei
(u) = {v ∈ Rei

| v[Xi] = u[Xi]}. (11)

We can now write

|Si(u)| = |u[Xi] ▷◁ Join(Qei
)| =

∣∣∣ ⋃
v∈Rei

(u)

v ▷◁ Join(Qei
)
∣∣∣

=
∑

v∈Rei
(u)

|v ▷◁ Join(Qei
)| =

∑
v∈Rei

(u)

subj-wei
(v). (12)

We can obtain |Si(u)| with one scan over Rei
(u) because the subjoin weights of the tuples

in Rei
have been computed (by induction). To identify Rei

(u) for u, we create a perfect-
hashing structure on Rei in O(|Rei |) expected time, after which Rei(u) can be retrieved in
O(1 + |Rei

(u)|) time.
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We divide Re into equivalent classes based on the tuples’ projections onto Xi. If two
tuples u1 and u2 are in the same equivalent class, the numbers |Si(u1)| and |Si(u2)| are
identical. Hence, it suffices to compute |Si(u)| for one (arbitrary) representative u of each
equivalent class. On the other hand, if u1 and u2 are from different equivalent classes, the
sets Rei

(u1) and Rei
(u2) are disjoint. Hence, we can compute the |Si(u)| values for all

representatives in time∑
representative u of Re

O(1 + |Rei
(u)|) = O(|Re|+ |Rei

|) = O(IN).

A.2 Proof of Lemma 11
We prove the lemma by induction. The base case where e is a leaf of T is trivial and omitted.

Now, consider e to be an internal node of T . W.l.o.g., suppose that e has t ≥ 1 child
nodes in T denoted as e1, ..., et. Assuming inductively that the lemma is correct on Rei

of every i ∈ [t], next we will prove the correctness on Re as well. For each i ∈ [t], define
Xi = e ∩ ei.

Let u be an arbitrary tuple in Re. According to Lemma 22, there is a one-one correspon-
dence between u ▷◁ Join(Qe) and S1(u)×S2(u)×...×St(u) where Si(u) = u[Xi] ▷◁ Join(Qei

),
as defined at Line 2 of procedure children-prod. Hence, to take a uniform random tuple
from u ▷◁ Join(Qe), we can take a uniformly random tuple from Si(u) for each i ∈ [t]. Next,
we will show how to construct in O(IN) expected time a structure of O(IN) space from which
we can sample from Si(u) in O(1) time. This will prove Lemma 11 because t = O(1).

For each u ∈ Re, define Rei
(u) as in (11). We can now write

Si(u) = u[Xi] ▷◁ Join(Qei
) =

⋃
v∈Rei

(u)

v ▷◁ Join(Qei
).

Random sampling from Si(u) can be performed in two steps. First, obtain a random tuple
X ∈ Re(u) such that Pr[X = v] = |v ▷◁ Join(Qei

)|/|Si(u)| = subj-wei
(v)/|Si(u)| for each

v ∈ Rei
(u). Second, draw a uniformly random tuple from X ▷◁ Join(Qei

).
Since the second step can be supported in O(1) time by induction, we focus on the first

step. As |Si(u)| =
∑

v∈Rei
(u) subj-wei

(v), the first step is an instance of weighted sampling
once the subj-wei

(v) of every v ∈ Rei has been computed using Lemma 10 in O(IN) expected
time. An alias structure on Rei

allows us to obtain X in constant time. The structure can
be built in O(1 + |Rei(u)|) time. It suffices to build such a structure for every “equivalent
class” of Re (as defined in Section A.1). All those structures take O(IN) time to construct in
total and occupy O(IN) space overall.

B Correctness of Our Sampling Algorithm in Case 2 of Section 4.2

Consider the following procedure:

component-prod
1. S× ← ∅
2. Si ← σzi

(Join(Qi)) for each i ∈ [s] /* recall that zi = z[Vi] */
3. for each (v1, ..., vs) ∈ S1 × ...× Ss do
4. add v1 ▷◁ v2 ▷◁ ... ▷◁ vs to S×

The correctness of our sampling algorithm for Case 2 of Section 4.2 is a corollary of:

▶ Lemma 23. Both statements below are true about component-prod: (i) Line 4 always
adds a new tuple to S×, and (ii) σz(Join(Q)) = S×.
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Proof of Statement (i). For each i ∈ [s], take an arbitrary tuple vi ∈ Si. We will first
show v1 ▷◁ v2 ▷◁ ... ▷◁ vs ̸= ∅. For this purpose, it suffices to prove that, for any distinct
i, j ∈ [s] with Vi ∩ Vj ̸= ∅, it must hold that vi[Y ] = vj [Y ] for any attribute Y ∈ Vi ∩ Vj .

As Y ∈ Vi (resp., Y ∈ Vj), there is a hyperedge ei ∈ Ei (resp., ej ∈ Ej) containing Y .
As ei and ej are in different (Z, T )-components — recall that T is a join tree of Q — the
(unique) simple path between them on T must cross at least one Z-breakable edge, denoted
as {e◦, e•}. The connectedness property of T ensures that Y ∈ e◦ ∩ e•. By the definition of
Z-breakable edge, Y must be an attribute in Z, indicating that the tuple z has a Y -value.
As vi ∈ Si and vj ∈ Sj , we must have vi(Y ) = vj(Y ) = z(Y ).

To prove the statement, it remains to show that Line 4 never adds to S× the same tuple
twice. Consider any two executions of Line 4: the first with vi = v1

i for i ∈ [s], and the
second with vi = v2

i for i ∈ [s]. There exists at least one j ∈ [s] such that v1
j ̸= v2

j . This
further indicates the existence of an attribute Y ∈ Vj such that v1

j (Y ) ̸= v2
j (Y ). We can now

assert that v1
1 ▷◁ ... ▷◁ v1

s and v2
1 ▷◁ ... ▷◁ v2

s must differ in their Y -values.

Proof of Statement (ii). We will first prove

σz(Join(Q)) ⊆ S×. (13)

Take any tuple v ∈ σz(Join(Q)). Define vi = v[Vi] for each i ∈ [s]. To show (13), it suffices
to prove vi ∈ σzi

(Join(Qi)) for every i ∈ [s]. We achieve the purpose by arguing that
vi[e] ∈ Re for any e ∈ Ei. As every relation of Qi belongs to Q, we know Re ∈ Q. We can
thus infer v[e] ∈ Re from v ∈ σz(Join(Q)). On the other hand, v[e] = vi[e] because e ⊆ Vi.
It thus follows that vi[e] ∈ Re.

Next, we will prove

S× ⊆ σz(Join(Q)). (14)

For each i ∈ [s], take an arbitrary tuple vi ∈ Si. Define w = v1 ▷◁ ... ▷◁ vs. Our proof of
statement (i) has explained that w cannot be empty. To prove (14), our goal is to show
that w ∈ σz(Join(Q)). We first argue that w ∈ Join(Q), i.e., w[e] ∈ Re for every e ∈ E .
Indeed, as e must belong to Ei for some i ∈ [s], we know w[e] = vi[e], which is in Re because
vi ∈ σz(Join(Qi)). To prove w ∈ σz(Join(Q)), we still have to show w(Z) = z(Z) for every
Z ∈ Z. For this purpose, simply identify any i ∈ [s] satisfying Z ∈ Vi (this i exists because⋃s

i=1 Vi = V). That w(Z) = z(Z) follows from the fact vi ∈ σzi
(Join(Qi)).

Statement (ii) follows from (13) and (14).

C Supplementary Content for Section 5

Proof of Proposition 19. For any random variables X and Y , the total law of expectation
states E[X] = E[E[X | Y ]]. To prove the proposition, define X to be 1 if U ≤ Γ or 0 otherwise;
furthermore, set Y = Γ. Clearly, E[X | Y ] = Pr[U ≤ Γ | Γ] = Γ/m by the independence of
U and Γ. We can now derive Pr[U ≤ Γ] = E[X] = E[E[X | Y ]] = E[Γ/m] = 1

m E[Γ].

Proof of Proposition 20. If deg(y) = 1, then F is deterministically m− 1, in which case
the lemma clearly holds.

The rest of the proof considers deg(y) ≥ 2. In that scenario, F can be rephrased in the
following conventional WoR-sampling setup. Suppose that we have m− 1 balls, among which
deg(y)− 1 ones are red and the rest are white. Uniformly sample a ball WoR until seeing a
red ball, and F gives the number of white balls sampled in this process. It is well known (e.g.,
see [25]) that F follows the Negative Hypergeometric distribution with E[F ] = m

deg(y) − 1.
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Supporting the Size Operation in Section 5.2. Let G = (V, E) be a schema graph and
Z be a subset of V such that G is ext-Z-connex. Let Q be a join instance of G. Suppose that
we have built a structure Υ of Theorem 5 on Q based on the description in Section 4.2. Given
any tuple z over Z, we will show how to use Υ to get the size |σz(Join(Q))| in constant
time. In fact, we have already discussed this in the scenario where G is Z-canonical — see
the remark in Section 4.2. Next, we consider that G is not Z-canonical.

As G is ext-Z-connex, by Lemma 16, any join tree T of G defines a number s of
(Z, T )-components of G — denoted as G1 = (V1, E1), ...,Gs = (Vs, Es), respectively — such
that Gi is (Vi ∩ Z)-canonical for every i ∈ [s]. For each i ∈ [s], define Zi = Vi ∩ Z and
Qi = {Re ∈ Q | e ∈ Ei}. Note that Qi is a join instance of Gi, which is Zi-canonical.
For each i ∈ [s], the structure Υ includes a structure of Theorem 5 on every Qi (i ∈ [s]);
denote that structure as Υi. Now, consider a tuple z over Z whose |σz(Join(Q))| is
to be computed. For each i ∈ [s], we define zi = z[Vi] and use Υi to obtain the size
|σzi

(Join(Qi))| in O(1) time (this is doable because Gi is Zi-canonical). Finally, we return
|σz(Join(Q))| =

∏s
i=1 |σzi(Join(Qi))|. The correctness is guaranteed by Lemma 23.

D Completing the Proof of Theorem 9

Let G = (V, E) be an acyclic schema graph and Q be a join instance of G. Yannakakis’
algorithm [33] outputs Join(Q) in O(IN + |Join(Q)|) time. The algorithm allows one to
specify a source relation R ∈ Q. In an O(IN)-time preprocessing stage, it

converts R into a fully-reduced state, i.e., eliminating every tuple u ∈ R with u ▷◁

Join(Q)) = ∅ (i.e., u does not “contribute” to the join result);
creates a structure that, given any tuple u ∈ R, can report u ▷◁ Join(Q) in O(|u ▷◁

Join(Q)|) time.

Let Z be a subset of V such that G is ext-Z-connex. It should have become fairly
straightforward to combine the above and the discussion in Section 5.2 to obtain a structure
with the following guarantees: it uses O(IN) space, can be built in O(IN) expected time, and
when given a tuple z over Z, can report σz(Join(Q)) in O(1 + |σz(Join(Q))|) time.

Case 1: G is Z-Canonical. By Definition 12, there is a hyperedge e∗ ∈ E satisfying
Z ⊆ e∗. Run the preprocessing stage of Yannakakis’s algorithm to create the aforementioned
structure Υ by specifying Re∗ as the source relation (recall that this is the relation in Q
whose schema is e∗). The preprocessing leaves Re∗ in a fully-reduced state. Given a tuple z

over Z, we identify with hashing in constant time the set Re∗(z) as defined in (7). Then, for
each u ∈ Re∗(z), use Υ to report u ▷◁ Join(Q) (which must be non-empty).

Case 2: G Is Not Z-Canonical. Let T be an arbitrary join tree T of G, which defines a
number s of (Z, T )-components of G— denoted as G1 = (V1, E1), ...,Gs = (Vs, Es), respectively

— such that Gi is (Vi ∩Z)-canonical for every i ∈ [s] (see Lemma 16). For each i ∈ [s], define
Zi = Vi ∩ Z and Qi = {Re ∈ Q | e ∈ Ei}. Note that Qi is a join instance of the schema
graph Gi, which is Zi-canonical. For each i ∈ [s], build a structure Υi on Qi in the way
explained for Case 1. Consider now a tuple z over Z. For each i ∈ [s], defining zi = z[Vi],
we use Υi to extract Si = σzi

(Join(Qi)). Then, for every (u1, ..., us) ∈ S1 × ...× Ss, output
u1 ▷◁ u2 ▷◁ ... ▷◁ us.
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